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Introduction

Two widely used forms of attitude parameterization are
the rotation matrix form and the Euler parameter form.
Each form is globally nonsingular and numerically ideal
because rotation group algebra in terms of each involves or-
thogonal transformations. The transformation of one form
to the other is of both practical and theoretical interest.
The transformation of Euler parameters to rotation matri-
ces can be expressed globally as a single matrix equation,
but the same is not true of the opposite transformation.

The transformation of rotation matrices to Euler pa-
rameters was solved by Klumpp [1] and Shepperd [2], but
their transformation algorithms are not truly global. The
Klumpp algorithm is not truly global because for certain
attitudes it produces indeterminate forms that must be re-
solved by additional steps. The Shepperd algorithm is not
truly global because it uses different nonglobal transfor-
mations for different regions of the attitude state space.

This paper presents the first global algorithm for
transforming rotation matrices to Euler parameters. Al-
though it has no apparent computational or numerical ad-
vantage over the known algorithms, it provides insight into
the relationship between the two forms. It makes use of the
singular value decomposition (SVD), a numerically ideal
algorithm involving orthogonal transformations. The sub-
sequent sections review attitude parameterization, estab-
lish an analytical framework, and finally present the new
transformation algorithm.

Attitude Parametrization

According to Euler’s theorem, the attitude of a rigid body
can be reached from any arbitrary reference attitude by
a rotation about an axis referred to as the Euler axis or
eigenaxis. Suppose that two Cartesian coordinate frames
are specified: an arbitrary reference frame, and a body
frame that is fixed with respect to the rigid body. The
reference attitude is defined such that the body coordinate
frame is aligned with the reference coordinate frame. Let
a € IR® be the identical body and reference coordinates
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of a unit vector aligned with the eigenaxis, and let ¢ €
IR be the angle of rotation about the eigenaxis, defined
in a right-hand sense. Let R € IR**® and 8 € IR* be
the rotation matrix and the Euler parameters, respectively,
corresponding to the attitude of the body frame relative
to the reference frame. Also, let € € IR® be the first three
Euler parameters, and let n € IR be the fourth.

The rows of R are the reference coordinates of unit
vectors aligned with the corresponding body axes; the
columns of R are the body coordinates of unit vectors
aligned with the corresponding reference axes. Premul-
tiplication by R transforms the reference coordinates of a
vector to the body coordinates of the same vector; premul-
tiplication by RT does the opposite. The rotation matrix
R is expressed in terms of the eigenaxis coordinates a and
the rotation angle ¢ as

exp(—gax) (1)
(cos )T 4+ (1 — cos p)aa” — (sing)ax  (2)

R =

where the skew-symmetric cross-product operator is de-
fined for an arbitrary three-component variable as follows:

K1 0 —K3 Ko
K = Ko — KX = K3 0 —K1
K3 —K2 K1 0

Because k x kK = 0, kX is singular and « is in its nullspace.
Because the reference frame and the body frame are both
orthogonal, so is the rotation matrix R, hence RTR =
RR"T = I, R~' = RT, and all three singular values of R
are 1.

The Euler parameters 3 are expressed by definition in
terms of the eigenaxis coordinates a and the rotation angle

¢ as

sin(¢/2) a 3)
cos(4/2) 4)

The Euler parameters (which are equivalent to the coeffi-
cients of a unit quaternion) have unit norm by definition,
hence || 3]|> = 8T8 = €Te +n? = 1. The Euler parameters
do not uniquely parametrize attitude because if the signs
of all four parameters are changed they still correspond
the same physical attitude (they correspond mathemati-
cally to an odd number of complete revolutions about the
eigenaxis).

£ =

’[} =



Transformation of Euler parameters to rotation ma-
trices is expressed as [3, 4]

R=(n*—eTe)I +2ee™ — 2pex (5)

Analysis

Singular value decomposition [5, 6] is the factorization of
any matrix into a product of the form USV”, where U and
V are square and orthogonal, and S is diagonal, has the
same dimensions as the original matrix, and contains the
nonnegative singular values in decreasing order along the
diagonal. The columns of U corresponding to the nonzero
singular values form a basis for the range space of the orig-
inal matrix. The columns of V' corresponding to the sin-
gular values equal to zero form a basis for the null space
of the original matrix.

According to Euler’s theorem, the eigenaxis coordi-
nates a remain invariant under a coordinate transforma-
tion by any related rotation matrix of the form exp(—aax)
for any rotation angle a € IR. For the particular case in
which a = ¢, because R = exp(—¢ax) this invariance is
expressed as

Ra=RTa=a (6)

The eigenaxis coordinates thus constitute an eigenvector
of the related rotation matrix, with a corresponding eigen-
value of 1. The other eigenvalues of R are exp(+i¢). Equa-
tion 6 is equivalent to

(R—DNa=(R"-Ia=0 (7

Both R — I and RT — I are therefore singular, and a is in
their nullspace.
Singular value decompositions of each are of the form

R-1 =
RT -1 =

usv?t (8)
vsu?t (9)

where S € IR3*3 is diagonal and contains the nonneg-
ative singular values in decreasing order along the di-
agonal, and where U,V € IR®>*3 are orthogonal, hence
UTU = UUT = VTV = VVT = I. Let u; and v; be
the ith columns of U and V, respectively, and let s; be the
ith singular value, so that USVT = E?leiuiv;‘r. Because
R — I and RT — I are singular, their last singular values
must be zero, hence s3 = 0. Also, because the columns of
U and V corresponding to the singular value of zero form
a basis for the null space, uz3 = v3 = *a. The matrices U
and V, which are rotation matrices themselves, therefore
correspond to orthogonal frames that are related by some
as yet unknown rotation angle about their common third
axis, which is the eigenaxis.

In the basic singular value decomposition, the ma-
trices U and V can have determinants of £1. The sin-
gular value decomposition of a matrix is not unique, be-
cause if USV7T is a valid singular value decomposition, so
is (=U)S(=V)T, among others. Note that det(kM) =

k™det M, where k is an arbitrary scalar and M is an ar-
bitrary n x n matrix. Because k¥ = —1 and n = 3 in
this case, det(—U) = —detU and det(—V) = —det V. It
can therefore be specified without loss of generality that
det U = det V =1, so that both U and V are right-handed
orthogonal rotation matrices.

Because R = exp(—¢ax), it is clear that

exp(aax)(R —I)exp(—aax)=R -1 (10)

for all @ € IR. By substituting equation 8 into equation 10
and rearranging, it also becomes clear that

[exp(aax)U] S [exp(aax)V]T = USVT (11)

for all & € IR. Therefore, rotation of the frames corre-
sponding to U and V each by the same arbitrary angle
about the eigenaxis produces another valid singular value
decomposition. The first two singular values must there-
fore be equal. Also, because

[exp(aax)U]T [exp(aax)V] =UTV (12)

for all a € IR, the product on the left side is invariant with
respect to a. The product UTV is therefore a rotation ma-
trix corresponding to a rotation by some as yet unknown
angle about the eigenaxis. The angle of rotation will now
be determined.
Let A be a right-handed orthogonal rotation matrix
defined as
A=[a ay a]e R (13)

where the third column contains the eigenaxis coordinates.
Because A is orthogonal, ATA = AAT = I, which implies
that ala; = alaz = aTa =1 and aTa; = aTaz = aTay =
0. Also, det A = 1, which implies that az = a x a; =
—a; X ay and a1 = a3 X a = —a X ay. It has been shown
above that all possible U and V matrices are parameterized
by a rotation of the frame corresponding to A about the

eigenaxis by some arbitrary angle. Therefore, let

U =
vV =

exp(aax)A (14)
exp(yax)A (15)
where the relationship between angles a and v is to be

determined. With the previous identities and equation 2,
it has been determined that

U = [ caa; —saay caaz +saa; a] (16)

V. = [cyar —syas cyaz+sya; a ] (17)

where ¢ and s are short for cosine and sine. Also, let
S =2 c(a—v)| diag{1,1,0} (18)

By performing the matrix multiplication and simplifying,
it has been established that

USVT =2| c(a=) | [c(a—7)(I—aa”)—s(a—y)ax] (19)



The following identities have been used: azaf — a1al =

ax, ajal — asal = —ax, cacy + sasy = c(a — v), and
sacy — casy = s(a — 7).

By substituting equations 19 and 2 into equation 8§,
squaring both sides, and simplifying, it has been estab-
lished that

a—vy=¢/2+tn/2 (20)

In addition to the previous identities, the following iden-
tities have been used: 2¢?0 = 1 + ¢(20), 2520 = 1 — ¢(26),
and 2sfcf = s(26), with 8 = a — . It then follows from
equations 16 and 17 and the previous identities that

sin(¢/2) cos(¢/2) 0
UTV = | —cos(¢/2) sin(¢/2) 0 (21)
0 0 1

for the case in which a—v = ¢/2+ /2. For the other case,
in which a — v = ¢/2 — /2, the signs of the upper left
two-by-two block are all changed. Both the plus and the
minus sign are valid in equation 20 because if the signs of
all four Euler parameter are changed, they still correspond
to the same physical attitude.

Transformation Algorithm

The algorithm for globally transforming rotation matrices
to Euler parameters can now be stated as follows. For the
rotation matrix R, perform a singular value decomposition
of R — I, where I is the identity matrix, to obtain

R-1=USV" (22)

Let u; € IR® and v; € IR? be the ith columns of U and
V, respectively, and let s; € IR be the ith singular value.
Then det(U)us = det(V)vs = *a, where a is the eige-

naxis coordinates. Also, ufv; = ulvs = sin(¢/2) and
uTvy = —ulv; = cos(¢/2), where ¢ id the angle of rota-

tion about the eigenaxis. The transformation can therefore
be expressed in several possible ways, such as

det(V)vz u v (23)
uf vy (24)

£ =
’r’ =

The multiplication by det(V') above should not actually be
performed, but rather the signs should simply be reversed
if det(V) = —1.

The algorithm may fail if R = I because the singular-
value decomposion of R — I = 0 is not well defined. For-
tunately, however, this case can easily be detected by the
algorithm and the transformation is then trivial. Thus,
the only exceptional case is that if s; = 0, set ¢ = 0 and
n = 1. No numerical problems occur for cases where R
is very close to but not equal to I. The existence of this
exception seems to mean that the algorithm is not truly
global, but since the exception is only a single point that is
easily detectable and requires no alternative computation,
the algorithm is still considered global.

If a sequence of Euler parameters approximating a
continuous function of time is required, then the appropri-
ate signs must be chosen for the Euler parameters. This
can be done by taking the inner product of the current Eu-
ler parameters with the previous ones, and changing the
signs of the current ones if that inner product is negative.
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