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Abstract: An attitude control law is derived to realize lin-
ear error dynamics, with the attitude error properly de-
fined in terms of rotation group algebra (rather than vector
algebra). Euler parameters are used in the rotational dy-
namics model because they are globally nonsingular, but
only the minimal three Euler parameters are used in the er-
ror dynamics model because they have no nonlinear math-
ematical constraints to prevent the realization of linear er-
ror dynamics. The control law is singular only when the
attitude error angle is exactly 7 rad about any eigenaxis,
and a simple intuitive modification at the singularity al-
lows the control law to be used globally. The forced error
dynamics are nonlinear but stable. Numerical simulation
tests show that the control law performs robustly for both
initial attitude acquisition and attitude control.

Introduction

The conventional approach to attitude control is based on
linear control theory. The nonlinear rotational dynamics
model is adapted to linear control theory by approximat-
ing it with a set of linear dynamic models that are tangent
to it at selected design states. The tangent models are in
the form of transfer functions or state-space models, de-
pending on whether the frequency-domain or time-domain
version of linear control theory is to be used. Linear con-
trol theory is applied to each tangent model separately,
and the control parameters are scheduled as required in
flight. This approach is used for virtually all currently op-
erational aircraft and for some spacecraft. It is also still
widely used in current research and development.

Linear control theory was perhaps the only practical
alternative when onboard computers were severely limited,
but for the following reasons it may not be the best alter-
native now. First, the rigid-body dynamics and the mo-
ment generation are coupled together in the linear tangent
models into a single abstract mathematical model without
clear physical meaning. Thus a mere change in the inertia
tensor, for example, necessitates in principle a complete
resynthesis of the control parameters. Furthermore, only
linear moment generation models can be used. Advanced
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nonlinear aerodynamic models for aircraft cannot be used
directly. Also, the attitude error is defined in terms of
vector algebra, which is valid only for small angular dis-
placements. Finally, stability away from the design states
is difficult or impossible to mathematically guarantee, es-
pecially if the dynamic effects of the parameter scheduling
are properly considered.

Attitude control theory was first introduced by
Meyer [1, 2]; other approaches were introduced later by
Mortensen [3], Dwyer [4, 5], Wie et al. [6, 7], and Slotine
and Li [8]. In contrast to linear control theory, attitude
control theory applies directly to the nonlinear rotational
dynamics. In each approach, the rigid-body dynamics and
the moment generation are decoupled into separate mathe-
matical models, and nonlinear moment generation models
of arbitrary complexity and sophistication can be used di-
rectly. These approaches can be divided into the two ma-
jor categories outlined below, and this paper introduces
a third, which incorporates features of the other two but
avoids their main problems.

Dwyer, and Slotine and Li, each used nonlinear trans-
formations to realize an exact linear model of the rotational
dynamics, to which linear control theory can be applied.
The state variables are some minimal (three-parameter) at-
titude form and its derivative with respect to time. Dwyer
used the minimal three Euler parameters, and Slotine and
Li used Euler angles. The main problem here is that a lin-
ear model of rotational dynamics cannot be global because
the transformations required to realize it violate the topol-
ogy of the attitude state space. Thus the attitude control
law is singular at certain attitudes, even with no attitude
error. The singularities could be avoided in practice by re-
orienting the coordinate frame online as necessary, but that
would add complexity and violate linearity. Furthermore,
to maintain linearity the attitude error must be defined in
terms of vector algebra rather than rotation group alge-
bra. Such a definition has no geometric meaning, and is
inappropriate in general, because attitude is not a vector.

Meyer, Mortensen, and Wie used Lyapunov control
theory. In Lyapunov control theory, a control law and
an associated Lyapunov function are postulated by intu-
ition, and stability is determined by analysis of the Lya-
punov function. The control law consists of feedback of a
linear combination of 1) the body coordinates of the an-
gular rate error and 2) some minimal attitude error form
that is appropriately defined in terms of rotation group



algebra. Feedback of attitude and angular rate errors are
intuitively analogous to feedback of position and velocity
errors to provide stiffness and damping in a linear posi-
tion controller. Mortensen and Wie used Euler parame-
ters, whereas Meyer used rotation matrices. For each case,
it is shown in this paper that the resulting unforced error
dynamics are nonlinear, but are approximately linear for
small errors. A disadvantage of Lyapunov control theory
is that the control law is based on intuition rather than
fundamental principles. Another disadvantage is that im-
portant concepts such as damping and loop bandwidth are
not well defined as in linear control theory.

In the approach presented in this paper, an attitude
control law is derived to realize linear unforced error dy-
namics with the attitude error defined in terms of rotation
group algebra (rather than vector algebra). Euler param-
eters are used in the rotational dynamics model because
they are globally nonsingular, but only the minimal three
Euler parameters are used in the error dynamics model
because they have no nonlinear mathematical constraints
to prevent the realization of linear error dynamics. The
control law is singular only when the attitude error angle
is exactly m rad about any eigenaxis, and a simple intuitive
modification at the singularity allows the control law to be
used globally. Exact linearity is realized for the first time
with an appropriate definition of attitude error.

Rotational Dynamics

The classical rotational dynamics of a rigid body [9, 10]
are reviewed in this section. Two right-handed, three-
dimensional cartesian coordinate frames are used: an in-
ertial frame that is fixed with respect to inertial space,
and a body frame that is fixed with respect to the body
of the vehicle. The symbol IR represents the real num-
bers; I represents an identity matrix of appropriate size;
the superscript T indicates transposition; a dot over a vari-
able indicates differentiation with respect to time; and the
skew-symmetric cross-product operator is defined for an
arbitrary three-component variable as follows:

K1 0 —K3 K2
K= | K2 - KX = K3 0 —r1 (1)
K3 —K2 K1 0

Because k x k = 0, kX is singular and & is in its null space.

Kinematics

According to Euler’s theorem, any attitude can be reached
from any reference attitude by a pure rotation about an
axis referred to as the Euler axis or eigenaxis. Let the
reference attitude be defined such that the body frame is
aligned with the inertial frame. Let a represent the identi-
cal inertial and body coordinates of a unit vector aligned
with the eigenaxis, and let ¢ be the angle of rotation about
the eigenaxis, defined in a right-handed sense. For |¢|< 7

the nonlinear rotational kinematics are described by
$ = d'w (2)
[I — cot(¢/2)ax](a x w)/2 (3)

where w represents the body coordinates of the angular
rate of the vehicle relative to inertial space, defined in a
right-handed sense.

a =

Direction Cosines

Let R € IR**® be the rotation matrix corresponding to the
attitude of the body frame relative to the inertial frame.
The rows of R are the inertial coordinates of unit vectors
aligned with the corresponding body axes; the columns of
R are the body coordinates of unit vectors aligned with
the corresponding inertial axes. The ¢, jth element of R,
referred to as a direction cosine, is the cosine of the angle
between the ith axis of the body frame and the jth axis of
the inertial frame. Premultiplication by R transforms the
inertial coordinates of a vector to the body coordinates of
the same vector; premultiplication by R” does the oppo-
site. Because the inertial and body frames are orthogonal,
the rotation matrix is also orthogonal, so

R'R=RR" =1 (4)

and all three of the singular values of R are 1.
The rotation matrix R is expressed in terms of the
eigenaxis coordinates a and the rotation angle ¢ as

exp(—gax) (5)
(cos §)I + (1 — cos p)aa’ — (singp)ax  (6)

R =

Because Ra = RTa = a, a is an eigenvector of both R
and R”, with a corresponding eigenvalue of 1. The other
eigenvalues of R are exp(+i¢).

The rotational kinematics are described in terms of
rotation matrices by

R=-wxR (7)

Euler Parameters

Let 8 represent the Euler parameters corresponding to the
attitude of the body frame relative to the inertial frame.
Also, let € represent the first three Euler parameters and
let  be the fourth, so that

ﬂz[;]eﬂ%“, ceeR®, nelR (8)

The Euler parameters, which are equivalent to the coefli-
cients of a unit quaternion, have unit norm by definition;
hence

1BIP=p8"3=e"c+n*=1 9)
The Euler parameters 3 are expressed in terms of the eige-
naxis coordinates a and the rotation angle ¢ as

sin(¢/2)a (10)
cos(9/2) (11)

£ =

77 =



The Euler parameters do not uniquely parameterize
attitude because if the signs of all four parameters are
changed they still correspond to the same physical atti-
tude (they correspond mathematically to an odd number of
complete revolutions about the eigenaxis). The nonunique-
ness of the Euler parameters can be resolved without sin-
gularities, however, by making an arbitrary initial choice
and then simply requiring that the parameters be contin-
uous in time.

The rotational kinematics are described in terms of
Euler parameters by

B =Qp/2 (12)
where () is a transformation matrix defined as
_ —wX w Ax4
o=| 5 ¥ ]erm (13)
Because QQT = QTQ = (wTw)I, Q is orthogonal for
w # 0, and all four of its singular values are || w ||

The eigenvalues of () occur in pairs at each of the points
+i ||w||. Equation 12 is equivalent to

B=Uw/2 (14)
where U is a transformation matrix defined as

U= [ _€T ] € R**3 (15)

and T is a transformation matrix defined as
T =nl +ex € R**3 (16)
Equation 14 is equivalent to the two equations

Tw/2 (17)
—etw)2 (18)

& =

n =
Because UTU = TTT + ee” = I, U is column orthogonal
and all three of its singular values are 1. Also, because

UTB = UTB = 0, the inverse rotational kinematics are
described by

20T (19)
073 (20)

w =
w =

The transformation matrix 7' defined in equation 16
has properties and relationships that greatly simplify the
attitude control law to be derived. Because

T '=TT +e™ (21)

it is apparent that 7' is singular at n = 0 or ¢ = £7 rad.
Also, from the definition of T' it is obvious that

Te=T"e =ne (22)

Hence ¢ is an eigenvector of both T and T7, with a cor-
responding eigenvalue of 1 or cos(¢/2). This fact will be

used extensively in the development of the attitude con-
trol law. The other eigenvalues of T are n +i || €|, or
exp(+ip/2). The singular values of T' are 1, 1, and |n|. It
has been discovered in this study that the transformation
matrix T and the rotation matrix R are related according
to

R=T'TT =TTTT 4 T (23)

This fact will also be used in the development of the atti-
tude control law. Expansion of equation 23 produces the
known form

R=(n?—ele)I +2ee’ — 2pex (24)

Note also that
Re=RTe=¢ (25)

Hence ¢ is also an eigenvector of R and R, with a corre-
sponding eigenvalue of 1.

Kinetics

The total angular momentum of the vehicle consists of the
angular momentum of the rigid body of the vehicle, plus
the internal angular momentum stored in the vehicle. For
spacecraft, the internal angular momentum is stored in
a momentum storage system, which consists of a set of
reaction wheels or control moment gyros. For aircraft, if
the propulsion system is asymmetric, a net internal angular
momentum is stored in rotating engine spools, propellers,
or rotors. Let H represent the body coordinates of the
total angular momentum relative to inertial space. Then

H=Jw+h (26)

where h represents the body coordinates of the internal
angular momentum relative to the wvehicle, and J is the
vehicle inertia tensor with respect to the body frame, in-
cluding the inertia of the momentum storage system. (If
J had been defined to exclude the inertia of the momen-
tum storage system, then equation 26 would be true if
h represented the body coordinates of the internal angu-
lar momentum relative to inertial space. The convention
adopted here is more convenient, however, because the in-
ternal angular momentum relative to the wvehicle can be
measured.)

Let M represent the body coordinates of the applied
moment. According to classical dynamics, the inertial co-
ordinates of the applied moment are equal to the rate of
change of the inertial coordinates of the inertial angular
momentum. Thus, RTM = d(RTH)/dt = RTH + R"H,
where RT M and RT H represent the inertial coordinates of
the moment and the angular momentum, respectively. By
premultiplying by R, and using equation 7, the rotational
kinetics equation

M=H+wxH=Jo+h+wx (Jw+h) (27)

is derived. It has been assumed that the inertia of the
momentum storage system is invariant with respect to the



body frame. It has also been assumed for now that the
moment and the momentum transfer rate are directly con-
trollable.

Continuous mass ejection, such as the exhaust of
burned fuel or the release of internal gases for control, can
be accounted for as an applied moment. An additional
term Jw could be added to the right side of equation 27
to account for the rate of change of the inertia tensor, but
it is usually negligible.

Attitude Control

Superscripts on variables are defined as follows:

c open-loop feedforward command
* closed-loop feedforward /feedback command
e rotational error

Variables without superscripts represent actual values, as
before. A superscript on a matrix indicates that the su-
perscript applies to each of the variables in the matrix.

A simplified diagram of the attitude controller is
shown in Figure 1. Accurate estimates of attitude and
angular rate are assumed to be available. Fuler param-
eters are used for attitude. Although Euler parameters
are not directly measurable, any direct measurement of
attitude can be transformed into them. Attitude is not
directly measured in an inertial navigation system, so Eu-
ler parameters can be used as well as anything else in the
numerical integration of angular rate measurements.

A feedforward command generator is required to ac-
cept the raw attitude or angular rate commands and to
generate a consistent set of feedforward command variables
{B°,w, w} for attitude, angular rate, and angular accel-
eration, respectively. In the most basic form, the feedfor-
ward command generator consists of an inverse rotational
dynamics model, but in that case the raw commands must
be suitably differentiable. Alternatively, the feedforward
command generator can be designed to precondition the
raw commands if that is considered appropriate for engi-
neering reasons. Command preconditioning might include
filtering of noise on analog real-time commands, for exam-
ple. It could also include filtering and rate limiting of the
raw commands to 1) prevent actuator saturation; 2) at-
tenuate actuator stress, energy consumption, or excitation
of structural vibration modes; or 3) avoid dangerous flight
conditions. Because the feedforward command generator
is specific to each application, it is outside the scope of this

paper.

Attitude Error

Because attitude has only three degrees of freedom, a min-
imal attitude parameterization form must have exactly
three components. It has been shown [11], however, that a
globally continuous mapping of the three-dimensional ro-
tation group onto IR® does not exist. A minimal attitude

form that is globally nonsingular therefore does not exist
either.

Consider Euler parameters, for example. The magni-
tude of the fourth Euler parameter is dependent, according
to the unit-norm constraint, on the first three parameters,
but its sign is independent. The actual information con-
tent thus consists of three real components and a sign. But
if all four of the Euler parameters have their signs changed,
they still correspond to the same physical attitude. The
fourth (or any other) Euler parameter can therefore be ar-
bitrarily constrained to be positive, and the other three
parameters will constitute a minimal parameterization of
attitude. A singularity will then occur, however, when the
rotation angle crosses +7 rad about any eigenaxis, because
then the signs of all four parameters must be changed to
keep the fourth parameter positive.

The nonminimal or over-parameterized nature of glob-
ally nonsingular attitude forms is such that nonlinear con-
straints exist among their elements. These nonlinear con-
straints make linear dynamics impossible to realize in
terms of all the elements simultaneously. However, a glob-
ally nonsingular form is not required for the attitude error
if the error angle does not approach 7 rad about any eige-
naxis. A minimal attitude error form can then be used so
that linear error dynamics can be realized.

In terms of rotation matrices, the relationship among
the attitude, the attitude command, and the attitude error,
is R = R°R°, or R = RR°T In terms of Euler parameters,
the relationship is 8 = VB¢ = WeT 3¢, where V and W
are transformation matrices defined as

vV = [_:QT ;]E[U B]eR™ (28)
W= [E:'; :f]uz%:le4 (29)

Because VIV = VVT = WIW = WW?T = I, both V and
W are orthogonal and all four of the singular values of each
are 1. The eigenvalues of V' and W occur in pairs at each
of the points n £ i || e ||, or exp(+i¢/2). The error Euler
parameters are determined from

ge=verg (30)
This is equivalent to the two equations

e = UTP (31)
n = BB (32)

where £°€ is a minimal attitude error form. Note that ¢ is
scaled version of the body coordinates of the error eigenaxis
and is valid only for error angles in the range 0 < ¢°¢ <
m rad about any eigenaxis. Because || €° || = sin(¢¢/2)
and 7 = cos(¢°/2), for small errors the magnitude of £°
is approximately equal to half of the error angle, and 7
is approximately 1. For perfect tracking of the attitude
command, 8 = 3¢, n° =1, and £° = 0.



Unforced Error Dynamics

The unforced error dynamics are the response of the atti-
tude and angular-rate errors, given their initial conditions,
in the ideal case when the error forcing function is zero.
This occurs when the closed-loop moment commands are
realized exactly. Details of the development of the unforced
error dynamics are given in the appendix.

By differentiating equation 31 with respect to time,
and simplifying based on equations 9, 14, 22, and 23, it
has been determined in this study that the unforced error
kinematics are described by

¢ = Tew®/2 (33)
E¢ = T2 —e(wTwe)/4 (34)
where
w® = w-— R%W° (35)
w® = w-—Rw—wxw° (36)

Equation 33 could have been anticipated because it is of
the same form as equation 17. However, the definition of
angular rate error in equation 35 has been determined in
the derivation of equation 33, and equation 23 has been
used to determine that definition. Whereas w® represents
the coordinates of the angular rate command resolved in
the commanded body frame, the term R°w® in equation 35
represents the coordinates of the angular rate command
resolved in the actual body frame, so the subtraction in
equation 35 is in terms of consistent coordinates. The feed-
forward angular rate and acceleration commands are

wt = 2UTpe (37)
W = 2UeTje (38)

which are consistent with equations 19 and 20.
An attitude control law will be derived to realize un-
forced error dynamics described by

£°=[(e%€%1) (39)

where £° = T°w®/2, and f represents an arbitrary linear
or nonlinear function. The error dynamics to be realized
could also be expressed in terms of any other minimal at-
titude error form, such as Euler angles, for example. Euler
parameters were chosen because they have ideal numerical
properties and because a series of elegant simplifications
occurs in the derivation of the control law.

An important special case is that in which the un-
forced error dynamics are linear and time-invariant, as
when described by

EC 4 1%+ coe® =0 (40)

where the damping coefficient ¢; and the stiffness coeffi-
cient ¢y are constant scalar design parameters. The poles
are the roots of the characteristic equation s2+c;s+co = 0.
They can easily be placed anywhere in the s-plane. The

coeflicients c¢g and ¢; could be generalized to matrix coeffi-
cients Cy and C} if desired, but the derivation of the con-
trol then becomes much more complicated. In that case,
the poles would be the roots of the characteristic equation
det(Is? + C1s + Co) = 0.

For some applications integral-error feedback may be
necessary to drive the steady-state attitude error to zero
in response to a steady bias moment. For that case, the
unforced error dynamics are still linear and time-invariant,
but are now described by

E° 4+ c16° + cpe® + ¢ /aedt =0 (41)

where the integral-error coefficient ¢; is a constant scalar
design parameter, and the other symbols are as previously
defined. The poles are the roots of the characteristic equa-
tion s + ¢15%2 + cos + ¢; = 0.

By substituting equations 33 and 34 into equation 40
and simplifying based on equations 9, 14, 22, and 23, it
has been established in this study that

E€ 4+ 1% + e’ =
T [0° + ciw® + 2(co — wTw®/4)e? /0] /2 (42)

After this is premultiplied by (7°¢)~!, it is clear that equa-
tion 40 is equivalent to

W8+ crw® + 2(co — wTwe/4)e®/n° =0 (43)

away from the singularity at n° = 0. For integral-error
feedback, equation 41 is used instead of equation 40, and
the unforced error dynamics are described by

W8 + 1w + 2(co — wTwe/4)e® In°

+2¢;(T°T + e%¢°T /n®) / edt =0 (44)

away from the singularity at n® = 0. Although equations
43 and 44 appear nonlinear, away from the singularity at
7 = 0 they are equivalent to equations 40 and 41, respec-
tively, which are linear in €.

Control Law

To realize arbitrary unforced error dynamics, equations 21,
33, and 34, along with equations 35 and 36 are used to
solve for the required angular acceleration. The resulting
closed-loop angular acceleration command is

LZJ* — Rewc +w X we + 2(T6T +6666T/ne)é-e
+(wTwe /4)e¢ /n° (45)
where £¢ = f(e¢,£°,t) represents the desired error dynam-
ics, with €¢ = Tw®/2. This is singular at n® = 0 or ¢¢ = 7.

By substituting this into equation 27, the attitude control
law is determined to be

M* — h* = Jo* +w x (Jw + h) (46)



Because the control law specifies only the combined term
M*—h*, the individual contributions of each term must be
specified according to engineering considerations outside
the scope of this paper.

To realize the linear, time-invariant, unforced error
dynamics described by equation 40, equation 36 is sub-
stituted into equation 43 and the required angular accel-
eration is solved for. The resulting closed-loop angular
acceleration command is then

W* = R 4w x w® — cyw® — 2(co — w7l w®/4)e® In° (47)

A schematic diagram of the resulting control law, along
with the rotational dynamics, is shown in Figure 2. Notice
that the sign ambiguity of the Euler parameters is taken
care of automatically by this control laws because ¢ /n®
is the same even if 3¢ is negated. The variable £/n is
equivalent to the Gibbs vector, another minimal form of
attitude parameterization that has an obvious singularity
at 7 = 0. Equation 44 can be used instead of equation 43
for integral-error feedback. The closed-loop angular accel-
eration command is then

W* = R + w X w® — ciw® — 2(co — wTw®/4)e® /n°

—2¢;(T°T 4 e%e°T /n°) /sedt (48)

The control law has been expressed in terms of the error
Euler parameters, which are not directly measurable but
can be determined from any attitude measurement.

The form of the control law makes the damping and
the feedback loop bandwidth easy to set by pole placement.
The coefficients from equations 40 and 41 appear directly
in equations 47 and 48, respectively. Such simplicity is no-
tably absent in some other methods. In optimal control
theory, for example, the basic design parameters (weight-
ing matrices) must be processed by a complicated algo-
rithm to determine the feedback gains (yet this is hardly
the most serious objection to most applications of optimal
control).

For stability, the poles must of course be in the left half
of the s plane. For the tightest possible tracking, the poles
should be placed as far into the left half of the s plane as
possible without risking instability due to discretization,
delays, or unmodeled moment-generation dynamics. Of
course, if the tightest possible tracking is not required, it
may be wise to place the poles nearer to the origin in order
to slow the response and thereby attenuate actuator stress,
energy consumption, or excitation of structural vibration
modes, for example.

Because the control law is intended for tracking of
dynamic commands, it accepts feedforward commands.
The feedforward commands improve transient performance
substantially by forcing the controller to respond instantly
to the commands rather than merely letting it react to
the errors. For regulation to a static attitude command,
however, or for raw attitude commands that consist of a
discontinuous series of rest states, the feedforward com-

mands can simply be deactivated by setting w® = w® = 0.
This will be referred to as feedback-only mode.

Although the control law realizes linear unforced er-
ror dynamics, the linearity is not global. The topology
of the attitude state space is such that global linearity
is mathematically impossible to realize. Thus the control
law becomes singular when 7° = cos(¢®/2) =0 or ¢¢* ==
rad about any eigenaxis. If the commands are physically
achievable without saturating the actuators, this is of no
practical concern because the attitude error angle should
never approach m rad. The inevitable singularity is essen-
tially as far out of the way as possible.

In the case of initial attitude acquisition from a ran-
dom state, or in case the commands are so untrackable
that the error angle approaches 7 rad, the simple heuristic
tactic of restricting the absolute value of 7¢ in the control
law to some minimim value 7¢ . & 0.1 prevents division
by zero while the vehicle recovers. This means that for
error angles greater than 2 cos™! Mnin the unforced error
dynamics will be nonlinear. Stability in this nonlinear re-
gion has not been mathematically analyzed, but simulation
results have yet to show any sign of instability even though
many degenerate cases have been tested.

Comparison with Other Control Laws

The Dwyer attitude control law [4, 5] can be expressed in
terms of our notation by replacing equation 47 with w* =
2T & — a1 (¢ —°) —ag(e —€°) + (wT'w/4)e]. This realizes
the linear error dynamics described by equation 40, but
with the attitude error inappropriately defined in terms
of vector algebra as ¢ = € — €°, which has no geometric
meaning. Also, this control law is singular at any attitude
(not attitude error!) corresponding to an angle of 7 rad
about any eigenaxis, because then the matrix 7" is singular.
This is essentially unacceptable in practice.

The Meyer attitude control law [1, 2] can be expressed
in terms of our notation by replacing equation 47 with
w* = R°W® + w X w® — cqw® — ¢gy¢. It has been deter-
mined in this study that this control law produces non-
linear unforced error dynamics described by &€ + ¢1€¢ +
(co(n®)? — wTwe /4)e® = 0. For the sake of comparison,
suppose that the Wie attitude control law [7] was extended
to track dynamic commands. It could then be expressed
in terms of our notation by replacing equation 47 with
w* = RwW® + w X w® — crw® — 2¢pe€. It has been de-
termined in this study that this control law would then
produce nonlinear unforced error dynamics described by
E¢ + c18° + (con® — weTw®/4)e® = 0. In each case the un-
forced error dynamics reduce to the linear form of equation
40 for small errors, because then 7 &~ 1 and w® =~ 0. The
control law proposed here, however, realizes exact linear-
ity even if the errors become large, as long as they do not
approach 7 rad.
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Moment Generation

The moment generation problem is the problem of deter-
mining the actual controls necessary to realize the closed-
loop moment command. (For convenience, the word mo-
ment will often be used to refer to the combined moment
and momentum transfer.) In general, the moment genera-
tion process is dynamic, involving lags and delays. If the
moment generation dynamics are much faster than the un-
forced error dynamics, however, they can be approximated
as static. This is equivalent to a time-scale separation or
a singular perturbation approximation.

The poles of the error dynamics can always be placed
as close as necessary to the origin of the s plane to make the
time-scale separation reasonable. Then the moment gener-
ation statics can be canceled, to the extent that that they
are known, by a static inverse-moment-generation map. If
the poles have to be placed too close to the origin, con-
trol accuracy may be inadequate, of course. Then a dy-
namic inverse-moment-generation model may be feasible,
but that may require additional measurements of actuator
states, and it is outside the scope of this paper.

The existence of a unique solution to the moment gen-
eration problem is not necessary. If multiple solutions ex-
ist, then one must be selected based on engineering con-
siderations. If no solution exists, then the commands are
physically unachievable and the best available nonsolution
must be selected until the vehicle recovers from actuator
saturation. If the best available nonsolution is unaccept-
able, then the problem is outside the scope of control the-
ory. Whereas the attitude control law is common to any
rigid vehicle, the moment generation problem is specific to
each application and is therefore outside the scope of this
paper.

In principle, all knowledge about external moments
can be used directly. For aircraft, this includes all theoret-
ical, computational, and experimental knowledge of aero-
dynamics. It also includes knowledge about the gravity-
gradient torque acting on an orbiting spacecraft, for exam-
ple, and the tether torque acting on a tethered spacecraft.
(The tether force could be measured, if necessary, by a
three-axis load cell at the attachment point.)

Forced Error Dynamics

The closed-loop moment commands cannot be realized ex-
actly in practice because: 1) the moment generation prob-
lem cannot be solved exactly due to modeling errors; 2) un-
predictable disturbances will impinge on the vehicle; and
3) the actuators will saturate (in position, rate, etc.) if the
commands are not physically acheivable.

Let AM — Ah is the moment generation error, where
AM = M — M* and Ah = h — h*. For the unforced
error dynamics described by equations 40 and 43, the cor-
responding forced error dynamics are described by

O + 1w +2(co —w Wt [4)e® [11° = T (AM — Ah) (49)

away from the singularity at n¢ = 0 or, equivalently,
E€ + 18° + coe® =TT 1 (AM — Ah) (50)

Although the unforced error dynamics are linear, the
forced error dynamics are nonlinear because the factor 7'
on the right side of equation 50 is a function of ¢, and
AM — Ah could also be a function of €¢ and its deriva-
tives. As for any truly nonlinear control problem, linear
forced error dynamics are mathematically impossible to
realize.

The left side of equation 50 is linear and, because the
singular values of T are 1, 1, and |n¢|, where 0 <|7¢|< 1,
the right side of equation 50 is bounded in magnitude by
the right side of equation 49. Therefore, the attitude error
can be forced into any bounded region of the origin, and
trapped in that region, by restricting the moment genera-
tion error, and the initial attitude and angular rate errors,
to some appropriate nonzero bounds. Those bounds can
be found by Lyupanov stability analysis, for example, but
such analysis is specific to each application.

This is the best general stability result that could pos-
sibly apply to the forced error dynamics for any attitude
control law. Bounded-input/bounded-output stability (de-
fined such that any bounded input causes a bounded out-
put) doesn’t apply because the attitude error is mathemat-
ically bounded by definition according to || &¢ || < 1 and
¢¢ < 7w rad. Alternatively, if an attitude error angle of 7
rad (or any other attitude error) is arbitrarily defined to
be unbounded, then bounded-input/bounded-output sta-
bility is impossible to achieve, because then some bounded
error forcing function can always be found that will drive
the attitude error unbounded.

For zero attitude error, T¢ = I, and for small errors,
TeT® ~ R°T according to equation 23. For small errors,
T¢ is therefore approximately an orthogonal rotation ma-
trix corresponding to half of the negative of the error an-
gle about the error eigenaxis. For small errors, therefore,
premultiplication of J '(AM — Ah) by T¢ corresponds
physically to a rotation about the error eigenaxis by half
of the rotation angle from the actual body frame to the
commanded body frame.

Simulation

Methods

A controller based on the proposed control law was tested
by numerical simulation. A simulation frame rate of 1 kHz
was used with trapezoidal integration to approximate the
continuous rotational dynamics, and a controller sampling
rate of 100 Hz was used. Four-byte arithmetic was used
throughout. The inertia tensor used for the simulation
results to be presented was J = diag (2, 2, 3)-1000 kg-m?2.
The two poles of the error dynamics were each placed at
s = —2.0 rad/sec.

Moment generation dynamics were neglected in the
controller design, but were modeled in the simulation as



a first-order lag. The following error sources were simu-
lated: moment disturbances, static and dynamic moment
generation errors, inertial measurement errors, command-
transducer noise, discretization errors, and quantization
errors. The intention was not to accurately model a specific
vehicle, or to accurately model error sources, but simply to
test the robustness of the new approach to attitude control.
Momentum transfer was not used, nor was integral-error
feedback.

Static moment generation errors were modeled by sim-
ply adding a random error to the moment commands to
obtain the applied moment. The random error was mod-
eled as a combination of an arbitrary scale factor, bias,
and random noise. The moment generation errors have the
same effect as disturbance moments. Also, the scale-factor
error mimics roughly the effect of an incorrectly known
inertia tensor. Actuator saturation limits were modeled
as hard limits on the applied moment in each axis. Dy-
namic moment generation errors were modeled as lags and
delays. The lags were modeled as first-order lags on the
applied moments in each axis, and were discretized at the
basic simulation frame rate by pole-zero mapping. The fi-
nal source of error was measurement or estimation error
in the inertial measurement unit, modeled as a bias and
random noise in each axis of the angular rate and the at-
titude.

A simple feedforward command generator was de-
signed to accept raw attitude commands in terms of Euler
angles (which were used only for ease of visualization). Be-
cause noise and quantization error in the raw commands
are of particular concern for the case of real-time com-
mand generation, random white noise was added to the
raw attitude commands to simulate a noisy analog com-
mand transducer. The raw commands are then quantized
at a specified number of bits to simulate the operation of
an analog-to-digital converter. The feedforward command
generator prefiltered the raw commands in a second-order
linear low-pass filter that was designed by pole-zero map-
ping to have two fast poles at s = —50 rad/sec. The pre-
filter attenuates the transducer noise and assures a twice-
differentiable attitude command signal while introducing
only a slight lag.

Results

Figures 3 and 4 are plots of simulation results for initial
attitude acquisition for a tumbling spacecraft. The ini-
tial attitude error is 180 deg and the initial angular rate
error is 10 rad/sec, which are about as severe as can be
expected, both about the first principle axis. This case
reduces essentially to a one-dimensional problem (for sim-
plicity of plotting), but for cases (not shown) with multi-
axis initial errors the response was fundamentally similar.
The error models were inactive, but cases were run both
with and without moment saturation limits. The moment
saturation limits were 2 kN-m, which corresponds to an-
gular acceleration saturation limits of 1 rad/sec?. Figure

Table 1: Simulation Error Parameters (each axis)

parameter | value

moment saturation limits | £2 kN-m
moment lag time constant | 100 msec
moment time delay | 100 msec

command noise | 0.2 deg

command quantization | 12 bits
command quantization inc | 0.09 deg
moment bias error | 100 N-m

moment scale factor error | 0.05

moment noise error | 50 N-m
attitude estimation noise | 0.002 rad
angular-rate meas noise | 0.002 rad/sec
attitude estimation bias | 0.005 rad

angular-rate meas bias | 0.005 rad/sec

3 shows the time responses. With saturation inactive, the
reference attitude was acquired very gracefully in about 5
sec. For the more realistic case with moment saturation
limits, the vehicle spun around for about 5 revolutions be-
fore coming to rest, but nevertheless came smoothly to
rest in about 17 sec. Figure 4 shows the corresponding
phase-plane diagram. The phase-plane curve starts at the
point (1,0) and moves clockwise. (The first Euler param-
eter rate is initially zero, even though the angular rate is
high, because the initial attitude is 7 rad about the first
axis.) Without saturation, the phase-plane curve heads
quickly to the origin. With saturation, it goes around in
an oval of decreasing size in the rate dimension until finally
the momentum is low enough that the reference attitude
is acquired. This illustrates that the control law works
exceptionally well for initial attitude acquisition. Thus, a
separate strategy is not required for this case as it is in
virtually all other approaches.

Figures 5 and 6 show simulation results for rest-to-
rest commands in roll angle, with all error models and
moment saturation limits inactive. Figure 5 shows the
time response for a 135-deg step command in roll angle.
Feedback-only mode is used because it is appropriate for
step commands. The response is as good as can be ex-
pected. Although the response is linear in the Euler pa-
rameters, it is nonlinear in roll angle. Figure 6 shows the
response for a rest-to-rest roll command of 135 deg in the
form of a fifth-order spline function, which has a bounded
second derivative. The response tracks the command so
closely that it is indistinguishable from it on the plot, as
expected. The feedback-only response, on the other hand,
lags the command by almost a full second. This illustrates
that the feedforward commands improve transient perfor-
mance substantially by forcing the controller to respond
instantly to the commands rather than merely letting it
react to the error.

Figures 7 and 8 show the simulation results for rest-
to-rest multiaxis commands in terms of Euler angles, with



the error models and saturation limits described in the pre-
vious subsection now active. The parameters of the error
models and saturation limits are summarized in Table 1.
In each case, simultaneous rest-to-rest commands of 30 deg
over 4 sec in each of the Euler angles are given. In Fig-
ure 7 the commands are in the form of linear ramp func-
tions, which do not have bounded second derivatives; in
Figure 8 they are in the form of fifth-order spline functions,
which have bounded second derivatives. These raw com-
mands were fed through the second-order linear prefilter
described in the previous subsection. The prefilter atten-
uates the command transducer noise and assures bounded
second derivatives for the feedforward command genera-
tor. In each run the vehicle follows the commands very
closely, with a slight lag due to the command prefiltering
and the moment generation lag and delay. The response
is particularly impressive in Figure 7 because the control
law saturated the actuators by factors of 2.0 and 2.5 in the
pitch and yaw axes, respectively. The slight overshoots due
to saturation at the corners of the ramp functions are ap-
parent. The slight offset at steady state is due to the sim-
ulated attitude measurement (or estimation) bias. These
plots demonstrate the robustness of the proposed control
method.

Conclusion

An attitude control law has been derived for the first time
to realize linear unforced error dynamics with the attitude
error properly defined in terms of rotation group algebra
(rather than vector algebra). Possible future research top-
ics to extend this new approach include derivation of a dual
estimation algorithm, theoretical analysis of robustness to
measurement error, adaptation to vehicles with on/off ac-
tuators and actuators with slow dynamics, and adaptation
to flexible structures.
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Appendix: Derivation Details

The following derivation details have made use of the ro-
tational kinematic relations expressed in equation 14, the
eigenvalue property of T' expressed in equation 22, the re-
lationship between T and R expressed in equation 23, and
the unit-norm constraint of the Euler parameters.
Expressions for the time derivatives of the minimal
error Euler parameters were derived as follows:
Ee — UCTﬁ
- UCT/B+ UCT[)) — UCTB _ UT,BC
UTUw/2 - UTU w2
T°w/2 — TTwe/2
T¢(w— T 'T°Tw) /2 = T¢(w — R°w°) /2
= T°w/2
g¢ = TC°w°/2+Tw/2
Tew®/2 4+ €° x w®/2 +n°w®/2
T0w¢/2 + (Tw) x w¢/4 —weTée/(2n°)
T€w€/2+ (Ee X we +n€w€) X w€/4_
weEeTTewe/(4ne)
Te0°%)2 + (€° X w®) x w¢/4 — weeTwe /4
Tewe/z + weweT66/4 _ 6eweTwe/4 _
weeTwe /4

T¢0°%)2 — efwTwe /4

It is interesting to note that the error kinematic relation
€¢ = T°w®/2 could have been anticipated because it is of
the same form as the actual kinematic relation & = Tw/2.
Note, however, that a definition of the angular rate error,
w® = w — R°w°, is obtained in the derivation. Whereas w®
represents the angular rate command resolved into com-
manded body coordinates, R°w® represents the angular
rate command resolved into actual body coordinates.



first Euler parameter

first Euler parameter rate, /sec

roll angle, deg

Figure 3: Initial Attitude Acquisition

1 1 1
error models inactive

-1

saturation active
saturation inactive

time, sec

Figure 4: Phase-Plane Diagram For Attitude Acquisition

error models inactive

-6

| ———saturation active
——— |saturation inactive

180

first Euler parameter

Figure 5: Single-Axis Step Sommand

i

0

a
T

©
o
T

T T T T T T
error models and saturation inactive

// command
45 / feedback-only response| _
S [EEEEEEDCEEEE
/
/
/
0 \ \ \ \ \ \
0 2 3 4 5 6 7 8
time, sec

11

Figure 6: Continuous Single-Axis Command

180 T T T T T T T
error models and saturation inactive
135 —
2
© L
o /
D 90 ; |
s /
/
—_— /
S /
pul / d
5 J/ comman |
// response
4 feedback-only response
0 |
0 1 2 3 4 5 6 7 8
time, sec

60 T

angle, deg

solid lines: command
error models and saturation active

3 4 5 6 7 8

60 T

angle, deg

solid lines: command
error models and saturation active

3 4 5 6 7 8



The following derivation is also needed.

2(T*)~

LEe 4 ¢18° + coe®)

(TeT + 26T ) (T0° — e°wTwe /2 +
c1Tw® + 2¢pe®)

0f — TTeweTwe — 2T eeweTwe 1 +

c1w® + 2¢o(TTe® + T In°)

we — neefwTwe /2 — e%eTecwTwe /(2n°) +
c1w® + 2co(n°e® +e°Te /n°)

0f — (12 + e Te)e w Tw® /(20 + 1w’ + 260
(1% + £°Te)e® /e

@ — e?wTwe/(20°) + c1w® + 2¢0e® /1

W + c1w® + 2(co — wT w? /4)e® In°
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