User Guide for an Efficient Scalar Class in Python

Russell A. Paielli*

Abstract— A Python class was designed to repre-
sent physical scalars and to eliminate errors involv-
ing implicit physical units (e.g., confusing angular
degrees and radians). The standard arithmetic op-
erators are overloaded to provide syntax identical
to that for built-in numeric types. The scalar class
comes with a complete implementation of the stan-
dard metric system of units and many common non-
metric units. It also allows the user to easily define
a specialized or reduced set of appropriate physi-
cal units for any particular application or domain.
Once an application has been developed and tested,
the units can easily be switched off, if desired, to
achieve the execution efficiency of operations on
built-in numeric types (which can be two orders of
magnitude faster). The scalar class can also be used
for discrete units to enforce type checking of inte-
ger counts, thereby enhancing the built-in dynamic
type checking of Python.

Introduction

Physical units and scalars are fundamental to virtu-
ally all scientific and engineering calculations. All
scientists and engineers learn to add, subtract, mul-
tiply, and divide units and to keep track of them
with pencil and paper. When they program a com-
puter, however, they usually drop the explicit units
and leave them implicit in the actual numerical cal-
culations, perhaps with a comment to document the
units. They do that for two basic reasons: (1) soft-
ware that automatically tracks and checks units, al-
though available, is not widely standardized and
well known, and (2) that software can, in some
cases, drastically reduce computational efficiency.
The objective of the scalar class is to address those
problems.

A consequence of the lack of explicit units in

*Russ Paielli can be reached through his website at
http://RussP.us. This document was last updated on 2006-
05-26 and applies to version 1.0 of the scalar class, which is
available at http://RussP.us/scalar.htm.

most scientific and engineering software is that mis-
taken units are a common source of error. Perhaps
the most common such error involves passing an
angle in degrees to a trigonometric function that
expects it in radians. Humans tend to prefer de-
grees, but standard trig functions take radians, and
the conversion is often forgotten until its omission is
discovered after time-consuming debugging. In one
extreme case, simulation results over a period of
six months were corrupted by such an error. Many
other unit errors also occur, of course. In air traffic
management (ATM), for example, horizontal dis-
tance is usually specified in nautical miles, whereas
altitude is specified in feet, hundreds of feet (“Flight
Levels”), or thousands of feet. Those units can eas-
ily get confused if comments in the code are the
only mechanism for checking consistency.

The approach taken here to prevent such con-
fusion is to allow the user to select units that are
appropriate for the job, then to track those units ex-
plicitly in software just as an engineer or scientist
would do on paper. The scalar class itself does not
specify any units, but a unit definition file can be
used to define the preferred units and the relevant
conversion factors for the particular application or
domain. T'wo such definition files are included with
the scalar package, one for metric units and one for
traditional ATM units. These files can be extended
easily and also serve as simple examples for creating
other sets of units.

When run in the interactive Python inter-
preter, the scalar class can serve as a “calculator”
that tracks units and checks consistency. No longer
must engineers enter only the numbers into a calcu-
lator and manipulate the units separately in their
heads or on paper. But the larger benefit of the
scalar class is in automatically catching unit er-
rors in Python scripts. For computationally inten-
sive applications, the units can be easily switched
off for efficient production runs. Thus, the scalar
class can be used during development and testing
to guarantee unit correctness, then turned off to ob-
tain the execution efficiency associated with built-in

numeric types. The resulting improvement in effi-
ciency can be two orders of magnitude (roughly a
factor of 100).

Several other software packages are also cur-
rently available in Python for representing and
manipulating physical scalars with units, but this
scalar class was developed independently. Any re-
semblance to other packages is coincidental. The
scalar class presented here is also believed to be
the first to provide the option to easily switch off
units to realize the efficiency of operations on built-
in numeric types. That capability could be a key
to widespread adoption, because the large computa-
tional overhead involved with tracking and checking
units is no longer a reason to avoid using them.

Installation

To install the scalar package, the “tar” file must
first be uncompressed and extracted:

% gtar -xzvf scalar-x.x.tar.gz
% cd scalar-x.x

where “%” is the command prompt, and “x.x” is
the version number. Since no compilation is neces-
sary, the user can then simply go to the “scalar”
directory and experiment with the package, if de-
sired. A default installation can be performed by
typing

% python setup.py install

The default installation may require “root” privi-
leges. For more information and other installation
options, try

% python setup.py --help
and
% python setup.py install --help

Another way to install the scalar class for an
individual user is to simply set the “PYTHONPATH”
environment variable to point to the directory con-
taining the scalar module (i.e., the “scalar.py”
file). No compilation is necessary. In the stan-
dard BASH shell, for example, this can be done by
putting the following line in the user’s “.bashrc”
initialization file:

export PYTHONPATH="/scalar-x.x/scalar

where the directory would be replaced with the ac-
tual location of the scalar module (“scalar.py”),
of course.

Usage

The scalar class is actually called “_scalar” be-
cause is not intended to be used directly. Instead,
a function called “unit” (which calls the _scalar
class constructor) is intended to be used to define
units. But the user need not even call the “unit”
function directly unless a new unit is needed that
is not already available in the unit definition file in-
cluded with the package. The units module (file
“units.py”) defines a comprehensive set of stan-
dard units, including the complete SI (metric) sys-
tem and many common non-metric units. To access
those units, simply “import” the units module:

from units import *

The “units” module imports the scalar module,
hence the user should not import the scalar mod-
ule directly. Doing so could cause problems if units
are later disabled for efficiency, which will be dis-
cussed later.

The pre-defined units in the units module are
as consistent as possible with standard unit abbre-
viations such as “s” for seconds and “m” for meters.
Thus, for example, the scalar “23 m/s?” would be
“constructed” with

vel = 23 * m/s**2

These short identifiers are convenient for interac-
tive “calculator” sessions or small applications, but
they may be inappropriate for larger applications
because short identifiers at global scope can cause
problems with name clashes and inadvertent shad-
owing or overwriting of unit names. To avoid such
problems, the units module can be imported with

import units

The meter object would then be referenced as
“units.m.” A cleaner form can be realized with

import units as u

The meter object is then referenced simply as
“u.m,” which saves on both typing and code clutter,
while maintaining the separate namespace.

Another way to avoid the short identifiers
at global scope is to use long unit names,
such as
“milliseconds,
also provided. See the units module for the com-
plete set of pre-defined unit names.

“meters,” “centimeters,” “seconds,’

7 “microseconds,” etc., which are

In addition to the units module, which is
fairly comprehensive, another smaller module called
“ATMunits” is also included. It was designed for ba-
sic air traffic management (not actual operational
ATM, but prototyping, testing, and data analysis).
It provides an example of a simplified unit definition
file for a particular application or domain without
the overhead of all the unused units in the units
module. Users can also copy the units module and
strip out what they don’t need, of course.

As in the SI system of units, the base unit for
length in the units module is the meter, and several
common scaled variations of it are defined:

m = unit ("m") # meter: length
m/1000.) # millimeter
um = unit ("um", mm/1000.) # micrometer
cm = unit ("cm", m/100.) # centimeter
km = unit ("km", 1000*m) # kilometer

mm = unit ("mm",

If only one argument is passed to the unit function,
it creates a new base unit, but if two arguments
are passed to it, it creates a derived unit that is
defined by the second argument. Length outputs
will be printed in meters by default unless the user
specifies otherwise. For example:

>>> dist = 5.2 * m

>>> dist += 27 * mm

>>> print dist

5.227 m

>>> print format(dist,"ft","%2.2f")
17.15 ft

The third argument for numeric formatting is op-
tional.

The “format” function raises an exception if
the unit specified in the second argument is not of
the correct type for the scalar object passed in the
first argument. The available output units are the
keys of the “to” dictionary in the units module.
The “format” function is not as convenient as a
simple print statement, but its use is highly encour-
aged for non-trivial programs because it guarantees
that the output will not change if units are switched
off for efficiency (which will be discussed below).
For that reason, it should be used (for non-trivial
programs) even when the desired unit is the base
unit.

The user is free to define any set of units,
but unit names should contain only alphabetic
characters (lowercase and/or uppercase letters).

Note however, that unit names with non-alphabetic
characters will not raise an exception until they
are printed out. [This allows output conversions
to units with non-alphabetic characters, such as
"ft-1bf"]

The convention for printing units is to show
multiplication with dashes, division with slashes,
and powers with the carat symbol. For example,
“kilogram-meters /second-squared” would be shown
as “kg-m/s”~2.” Only one slash is allowed, and if the
denominator has multiplied units they are placed
in parentheses and connected with dashes, such as
“kg/(m-s"2).”

No function is provided to extract the numer-
ical coeflicient of a scalar independent of the units
because that would depend on the base units cho-
sen. To write numerical data to a file without the
units, or to pass data to a third-party function or
application without the units, simply divide the
scalar by the required unit. Suppose, for exam-
ple, that a distance needs to be written or passed
as a number with implicit units of feet. If the vari-
able is named “dist”, then “dist/ft” will be auto-
matically cast to a built-in type (typically a float)
corresponding to the distance in feet.

A scalar cannot be cast to a built-in numeric
type such as “float” unless it is dimensionless. The
predefined units of “rad” (radians) and “deg” (de-
grees) in the units module are dimensionless, for
example, and the base unit is radians. This conven-
tion guarantees that standard trigonometric func-
tions will always be passed arguments in terms of
radians, as expected, and it prevents any other unit
from being erroneously passed to a trigonometric
function. For example, sin(30*deg) returns 0.5 as
expected rather than being converted to sin(30),
which would be wrong.

To facilitate the switching off of units for ef-
ficiency (to be discussed in the next section), the
scalar class has no public member functions (other
than the overloaded arithmetic operators). The rea-
son is that calls of member functions using stan-
dard “dot” notation cannot work on built-in nu-
meric types.

The scalar module imports the standard math
module, and it also defines new global functions
“Sqrt,” “Hypot,” and “Atan2.” When used on
float types, these functions are equivalent to their
uncapitalized counterparts in the standard math li-
brary, but they also work on scalar types.

Disabling Units for Efficiency

The scalar class can be used as a units “calculator”
in the interactive Python shell, and it is also compu-
tationally efficient enough for many non-interactive
applications. However, it may be too slow for some
computationally intensive applications. Computa-
tional “overhead” can make operations one to two
orders of magnitude (roughly 100 times) slower than
corresponding operations on built-in numeric types
such as “float” and “int.”

The source of that overhead is twofold. First,
the character-string manipulation involved with
tracking and checking the units obviously takes
But just disabling the unit tracking
cannot increase the efficiency to the level of built-in
types. The mere fact that scalar is a class rather
than a built-in type also adds substantial overhead,
slowing the execution speed by up to an order of
magnitude.

Fortunately, a simple but innovative method
has been devised to eliminate both sources of over-
head. After an application has been tested and its
unit consistency verified, the user can “switch off”
the units for production runs by simply replacing
"units.py" with "units_off.py" in the “import”
line:

some time.

from units_off import *
or
import units_off as u

Whereas the units module imports the file
"scalar.py", the units_off module imports
"scalar_off.py", which replaces the “unit” func-
tion with a function of the same name that sim-
ply returns 1. Thus, the expression “t=25*s” is re-
placed with “t=25%1," eliminating the overhead of
the units and the scalar class. It leaves an unnec-
essary multiplication by one, but that should not
be a concern unless it occurs in a highly repetitive
loop. If it does, the multiplication by the unit "s"
can perhaps be moved ahead of the loop.

If a program has more than one module that
imports the unit definition module, then disabling
the units requires that it be replaced with the “off”
This procedure can be
simplified by creating a one-line module that im-
ports the unit definition module, then importing
that module in place of the unit definition mod-

version in each module.

ule. For example, a file called “units_.py” could
be created containing a single line:

from units import *

Then all the other files that need to import the
units module can import units_ instead:

from units_ import *
or
import units_ as u

Then units can be disabled for the entire program
by simply changing the single line in “units_.py”
to

from units_off import *

As mentioned earlier, the scalar class has no
public member functions (other than the overloaded
arithmetic operators). The reason is that calls of
member functions using standard “dot” notation
cannot work on built-in types. To guarantee that
the switching off of units is as easy as possible, pub-
lic member functions are not provided.

Enhanced Dynamic Type Checking

The scalar class can also be used to implement
a stronger form of dynamic type checking than is
provided by the built-in dynamic type checking in
Python. Suppose, for example, that a discrete
count of “bars” needs to be maintained and per-
haps passed to a function or object. The user can
simply define a unit for it and use it like any other
unit:

bar = unit("bar")
count = 0

count += bar

If a count of type “bar” is then erroneously added to
an incompatible type, for example, the error will be
detected and flagged immediately, perhaps saving
substantial debugging time.

